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Abslraci We devise a method for designing maserials that will have some desired svuct"ral 
characteristics. We apply it Io multiblock copolymers that have two different types of monomer, 
A and B. We show how to determine what sequence of A's and B's should be synthesized in 
order to give a panicular mcture and morphology. Using this method in conjunction with the 
theory of micmphw separation developed by Leibler. we show it is possible to efficiently sex& 
for a desired morphology. The method is quite general and can be extended to design isolated 
heteropolymers, such JS proteins, with desired sfructuml chancteristics. We show that by making 
certain approximations to the exact algorithm, a method recently pmposed by Shakhnovich and 
Gntin is obtained. The problems with this method are discussed and we propose an improved 
approximate algorithm that is wmputationdly efficient. 

The problem addressed in this letter is the following. Is there an efficient method for 
designing a material with a particular morphology or structure? We develop a systematic 
approach to this problem that we illustrate for the design of copolymeric materials. 

Structures of single chains in solution have also been extensively studied, often in 
relation to the important biological question of how to determine the structure of a protein 
from its sequence [1,2]. Work on the~design of a chemical sequence which has a desired 
threedimensional structure has also been recently considered [3]. For the,two-dimensional 
model of Dill et ol [Z] it has been possible to devise a set of rules that achieve the desired 
tertiary structure [4]. In three dimensions, much less is known. Ad hoc methods have been 
attempted [S,6] but recent tests have shown that they are not entuely efficacious [7]. 

To illustrate our general method, we will apply it to design of block copolymers, which 
are polymers made out of more than one chemical species. We will 'consider copolymeric 
systems made up of two constituent types of monomer denoted A and B. The phase diagram 
of such materials has been studied as a function of the Flory interaction 'parameter K and 
the lengths of the segments of A and B. Lamellar, hexagonally closed packed, body centred 
cubic 181, and gyroid [9]  phases have been predicted. Experimentally copolymers have been 
found to exhibit a variety of different structures, sometimes referred to as microphases. 

Suppose we would like to design a new phase that has a given symmetry. Until now 
it was necessary to do an inefficient search through the phase diagpn of the system in 
order to find the desired symmetry. We show below that we can find a function that when 
minimized can home in on the correct structure. We then implement this practically in 
the framework of the theory of copolymers developed by Eeibler [8]. We then tum to the 
problem of protein design and discuss how the method we have developed can be u s e d  in 
this context. 

First we wish to determine the correct function to minimize in order to obtain the best 
sequence corresponding to  the desire$ morphology. We begin with a formulation of the 
general problem that we wish to  solve.^ Consider a system with coordinates denoted by 
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r and with a chemical sequence denoted by S. We can define a function which tells us 
whether each structure r is in the desired set of structures. Call this PsmI(P). It is a 
constant if r belongs to the class of desired structures and 0 otherwise. In practice we 
will express Psmct(r) in terms of the clamping potential defined below. Consider next 
the probability that a sequence S gives a desired structure. Since this is a conditional 
probability we denote it by P(Slstruct). We wish to find the maximum of P(S1strUct) over 
all sequences S keeping the structure fixed. To uniquely define P(Slsmct), we have to 
choose the a priori probability of choosing an arbitrary sequence S. The simplest choice 
is that it is uniform, that is P(S) is constant. We consider the system in equilibrium at 
a finite temperature so the probability that a sequence S has stTucture r is given by the 
Boltzmann factor P(r lS )  = exp (-[Hs(r) - Fo(S)] /T) ,  where &(r) is the Hamiltonian 
of the system with a particular sequence S, and Fo(S) is the corresponding free energy 
of the system with S kept constant. Bayes’ theorem states that the joint probability 
P(r, S) = P(rlS)P(S) = P(S l r )P( r ) ,  hence after some algebra, we obtain 

p~ststruct) = PsmCt(r)p(sir) = P;mcI(r) exp(-(Hs(r) - F ~ ( S ) ) / T )  (1) 
r r 

where 

Because P&,, does not depend on the sequence S, we can equally well regard it rather 
than Psmcl as given. It can be thought of as imposing an external clamping potential on 
the system, pushing it into the correct structure, Pkcr(r) = exp(-V,,(r)/T). We will 
make an appropriate choice for the clamping potential, Vext(I’) for each problem, based on 
physical reasoning rather than using (2) directly. Thus (1) can be further reduced to 

(3) 

where F,,&) is the free energy pushed into a certain structure by the clamping potential 

(4) 

The physical interpretation of this is clear. The optimum sequence is the one that minimizes 
the difference AF between the unrestricted free energy and the free energy clamped in the 
desired structure. Intuitively thii is reasonable because it picks out a sequence that naturally 
wants to spend a lot of time in this structure. This result is a generalization of that used in 
determining couplings in Boltzmann machines [IO]. 

As a first example, we apply the formalism above to design copolymeric systems with 
desired lattice structures. Leibler [81 has developed a theory of microphase separation for 
di-block copolymers. Here we have further generalized this to m blocks each block being 
made up entirely of A monomers or of B monomers, the ith having a length l;,  i = 1 . .  . m. 
The fractional length of the ith block is fi l i /L  where L is the total chain length. The A 
and B monomers have an incompatibility, or Flory, parameter x giving the degree to which 
the A and B monomers wish to segregate. Leibler took as the order parameter Ap, the 
ensemble average of the difference between the density of A’s and the average density of 
A’s. He was able to construct an expansion of the free energy in terms of A p  and calculated 
explicitly the expansion to fourth order in terms of the underlying chemical structure of the 
chains, that is, 11, 12, and x. This theory should work well near the spinodal point for this 
system, because A p  is small there. 

P(Slstruct) ci exp(-(Kmcr(S) - F o ( S ) ) / T )  E exp(-AF/T) 

exp(-Flouct(S)/T) E Cexp((-Hs(r)  + v a t ( w n  
r 
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To determine the stability of density variations with different crystallographic 

symmetries, Leibler took Ap to be a periodic function of position r, 

choosing the qj’s, j = 1, . . . , n to be the smallest non-zero reciprocal lattice vectors of 
the lattice structure being considered. The magnitude, q*. of the qj ’s  is taken to be the 
wavevector at the spinodal point where divergent fluctuations first appear. He further took 
the magnitude, but not the phase, of all the @(qj ) ’ s  to be equal. By choosing different 
qj‘s and minimizing the resultant free energies he computed which crystal structure had the 
lowest free energy. He was able to obtain a phase diagram for the system as a function of 
ft and xN. Besides the high-temperature disordered phase he found that the body centred 
cubic, triangular (hex.), and lamellar (lam.) phases existed in different regions of the phase 
diagram. Further work [ l l ,  121 extended this treatment to triblocks. 

It is convenient to take VaI(r) to be smoothly varying: 
n 

vat(r) = -U exp(iqj . r). (6) 

The magnitude of U adjusts the degree to which Ap fluctuates. A clamping potential with, 
for example, hexagonal symmetry is the sum of three plane waves. Applying such a potential 
to the unclamped free energy Fo, we obtain a clamped free energy 

j=l 

which will tend to push the system into a phase with the symmetry of the extemal potential. 
Unfortunately in the general formalism developed above it is necessary for the clamping 

potential V,, to be very large when monomers stray from the desired s!n~cture. This 
requirement leads to a large A p  and hence is incompatible with the limits of validity of 
the free energy expansion of Leibler which is only valid in the limit of weak segregation. 
Therefore we need to consider complications that arise when only a weak clamping potential 
is applied. 

For small V,,, the system will not always be pushed into the symmetry of the-extemal 
potential. In fact, for the values of U that we use, the effect of adding Vmt is only to slightly 
enlarge the region of the phase diagram that has the symmetry of Vat. Our algorithm 
determines which phase the system is in by allowing the magnitudes of the @ ( q j ) ’ s  to be 
unequal and then minimizing with respect to them. This allows the possibility of mixed 
phases with more than one type of symmetry. For example if we consider the hexagonal 
phase and write (5) in terms of its wavevectors qI, 42, and 4 3 ,  

= $lam exp(iqr r) + hex(exp(iq2 . r) + exp(iq3 . (8) 
we have a hexagonal structure (n = 3 for the hex. phase), and for then for @!, = 

ha = 0 we have a lamellar structure (n = 1 for the lam. phase). 
For small Vat, 

where n, is the number of q j ’ s  that V,, has in common with A p ( r ) .  From this it can 
be seen that A F does not do quite what one would like. In general a clamping potential 
will have reciprocal lattice vectors in common with more than one type of symmetry in 
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h p ( ~ ) .  This means that A F  will be lowered for other phases in addition to the one with 
the symmetry of Vat. For example, for a clamping potential with hexagonal symmetry vhm, 
AF(Vhm) = F ( h e x )  - FO will be lowered for the lamellar phase as well as the hexagonal. 
We would like a functional which is more selective in order to design a hexagonal material. 
The solution in this case is to subtract the lamellar component as fallows. Looking at (S), 
we see that the appropriate functional to maximize is kx. We would like to express hex in 
terms of free energy differences. FromA(9) = -(aAF(Vh,)/au) - aAF(Km)/au)/2. 
For small U this is proportional to F(Vk.) - F(Vtm). Therefore minimizing the difference 
in free energy between hexagonal and lamellar clamping will bring the system into the 
hexagonal phase. Figure l(a) shows (F(Vha) - F(Vb,,,)) as a function of the fraction f 
for diblock copolymers at x = 20. The minimum f = 0.32 occurs in the correct position 
indicated by Leibler’s theory. 

Figure 1. (U )  F(Vhu) - F(K,) and (b) F(Vecc)  - F(Vhu). a a function of the haction f 
for diblock copolymer design. The minima give the best choice for the design of hexagonal 
material and BCC material, respectively. 

We also tested out this method for designing diblock BCC structures. Figure l(b) shows 
F(VBcc) - F(h,,)  as a function o f f  at ,y = 20. The minimum f = 0.23 also occurs 
in the correct position but there is also a secondary small minimum at f = 0.32. This 
shows that there is no guarantee that there will only be one minimum for this minimization 
function. 

Now we turn to the problem of protein design. An interesting approach has recently 
been proposed by Shakhnovich and Gutin (SG) [5,6], who proposed a method for solving 
this problem for a simplified lattice model using a self-avoiding chain. The model they 
employed has sequences (q) of two possible monomer types that are given values f l ,  for 
chains of length N. This, plus the positions of all the monomers (r j ] ,  completely describe 
the state of the chain. We wish to find a sequence that causes the chain to fold up into a 
desired structure, but we do not care about what the monomer types end up being. The 
energy is 

N 
E ( ( u ~ I ,  (ri]) = 4 C ( E ~  + E U ~ U ~ ) A ( T ~  - rj). (10) 

i.j 

Here we will consider the case where A ( T ~  - rj) = 1 if ri and ~j are nearest neighbours, 
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and is zero otherwise. One sets B < 0, since this favours ferromagnetic ordering of the 
U’S,  which means that the monomen will want to segregate, and BO < 0 since this provides 
an attractive interaction between monomers causing the protein to collapse. 

Their method of sequence determination was to do a constrained minimization of the 
energy of the chain in sequence space. The constraint was that the total magnetization was 
held constant, in practice, close to zero. Note that without this constraint, all the U’S would 
become equal, and one would have a homopolymer which does not have a well-defined 
structure. Unfortunately it appears that even with constrained minimization, sequences 
found do not necessarily have to have the desired structures as thelowest energy states [7]. 
Even if the desired structure is a ground state, there may be a large ground-state degeneracy 
in which case the structure is ill-defined, as in the case of the unconstrained minimization 
just mentioned. 

The correct functional to minimize is AF defined in (3). If we specialize to the problem 
considered here, the constraining potential is a delta function since our structure is to be 
precisely determined. Calling the coordinates of the desired structure [rp), the correct 
functional to minimize is, according to (3), 

(11) 

SG’S method is a minimization of only the first term, with a constraint of constant total 
magnetization. We will now argue that the second term is not negligible~and cannot be 
omitted. In fact, we will see that a crude approximation gives an answer similar to the 
constraint of constant magnetization. But this approximation is of dubious validity which 
is why it failed. 

Take BO to be veIy large and negative so that all stable structures must be globular 
with minimal surface area. The coordinates of our strncfure (rp] are therefore constrained 
to be of this compact type and the term in the energy involving BO will not vary and 
can now be ignored in the minimization. The space,of all conformations ( T i ]  we need to 
consider are also compact conformations of the same overall shape, but different internal 
arrangements. We now expand out F([ui])  keeping only. the lowest order cumulant. 
F ( ( u i ) )  w ( E )  +constant. The angled brackets denote an average that is equally weighted 
over all compact conformations with minimal surface area. Ignoring constant terms, this 
gives ~ ~ ( { u ~ i ) )  w ;B x:j oiuj(a(ri - rj ) )  so 

A F  = L W i } ,  I$)) - Fo((~i1). 

N 

A F  1 B  z [ A ( ~ i  - ~ j )  - (A(Ti - T j ) ) l ~ p j .  (12) 
i . j  

One can easily show that the nearest-neighbour interactions along the backbone of the chain 
cancel, because the probability that monomers i and i + 1 are next to each other is unity. 
This must happen because this kind of interaction is the same for all configurations and 
consequently cannot play a role in choosing the optimum U’S .  We now find an approximate 
functional f o m  for (A(?-, - T ~ ) ) .  Since the chain is compact there is a short screening 
length. We therefore expect random walk correlations when li - j l  is greater than a few 
lattice spacings. However, when [i - j1’12 becomes of order of the diameter of the protein, 
the conformations cease to look like random walks as the protein is compact. This crossover 
corresponds to li - j l  - NZ13. For scales larger than this the correlation function should be 
almost constant. Therefore 
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Therefore in this approximation, F((ui])  looks like a onedimensional Ising model with the 
above long-range interaction. 

If we ignore the variation of (A(ri - rj)) with li - j l ,  i.e. (A(ri - rj)) = 1 /N 
so AFMF = E({ui}, {r:]) - B(CY ~i)~/(Zlv), then FO gives an infinite-range mean-field 
contribution that is antiferromagnetic, and hence acts as a ‘soft’ constraint favouring a total 
magnetization of zero. To have a total magnetization of zero, one must introduce a domain 
wall, which increases E((ui), (I$‘]) by of order N213, but this is more than compensated 
by the gain in free energy of the second term which is of order N. Hence in this limit 
we recover the approximation of SG. However, this is a rather drastic approximation. Even 
within the first-order expansion derived above, one is not justified in neglecting the shorter 
distance variation of (A(ri - r j ) )  because, within this mean-field approximation, there 
is a spurious degeneracy in the U’S  that minimize AFMp. This is because the three 
dimensional arrangement of the ut’s namely U(T)  is independent of the desired conformation 
(r;) .  That is, to find the correct sequence, it is not necessary to consider the different 
intemal arrangements of the chain inside the compact cluster, as they all give an identical 
AFM. After the minimization of AFMf has been performed once, the three-dimensional 
arrangement of the U’S do not change when the desired conformation is changed. 

However, a non-constant (A(?-; -rj)) breaks this degeneracy. It adds antiferromagnetic 
couplings along the backbone of the chain. This means that the domain wall should tend to 
orient itself roughly perpendicular to the direction of the backbone of the chain to satisfy 
the antiferromagnetic couplings. The contribution to AF due to the li - j p 1 2  decay of 
(A(ri - 3)) is substantial and cannot be neglected. We can easily estimate it for the case 
of a desired structure (r:] that is in a typical random configuration. For a piece of arclength 
s li - j l  = N213 the contribution to A F  is of order Bs2/s312 = BLIP. But there are 
L/L213 such pieces, giving a total contribution of order BL2I3. This is precisely the same 
order as the energy of the domain wall and therefore must be considered when designing 
proteins. 

In conclusion, we have developed a method to design molecules that will self-assemble 
into a desired stmcture. We used this to design block copolymers with desired structural 
characteristics, within the framework of Leibler’s mean-field theory. 

We also note that the method for design described above should also work for the 
problem of protein design for which no trustworthy methods have so far been devised. It 
would be interesting to see how well the approximate minimization function, given by (12), 
designs stable proteins. 
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